- 323.00 KB
- 2021-04-14 发布
第54课 随机事件的概率
[最新考纲]
内容
要求
A
B
C
随机事件与概率
√
互斥事件及其发生的概率
√
1.概率和频率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.事件的关系与运算
定义
符号表示
包含关系
若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A(或A⊆B)
相等关系
若B⊇A,且A⊇B,那么称事件A与事件B相等
A=B并事件
(和事件)
若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件
(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件,那么称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=∅
且A∪B=Ω
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式.
①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B);
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)事件发生的频率与概率是相同的.( )
(2)在大量的重复实验中,概率是频率的稳定值.( )
(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.
[答案] (1)× (2)√ (3)√ (4)×
2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为________.
② [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]
3.(2016·天津高考改编)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.
[事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.]
4.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是________.
[从A,B中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,
其中和为4的有两种情况(2,2),(3,1),
故所求事件的概率P==.]
5.(2017·威海模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是________.
[由题意知,所求概率P=+=.]
随机事件间的关系
从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是________.(填序号)
③ [从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,
其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.
又①②④中的事件可以同时发生,不是对立事件.]
[规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.
2.准确把握互斥事件与对立事件的概念.
(1)互斥事件是不可能同时发生的事件,但可以同时不发生.
(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.
[变式训练1] 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.
【导学号:62172298】
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C+E)=1;⑤P(B)=P(C).
①④ [当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C+E为必然事件,④正确.由于P(B)=,P(C)=,所以⑤不正确.]
随机事件的频率与概率
(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保 费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
[解] (1)事件A
发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
[规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.
2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.
[变式训练2] (2017·西安质检)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
天气
晴
雨
阴
阴
阴
雨
阴
晴
晴
晴
阴
晴
晴
晴
晴
日期
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
天气
晴
阴
雨
阴
阴
晴
阴
晴
晴
晴
阴
晴
晴
晴
雨
(1)在4月份任选一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
[解] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,
以频率估计概率,在4月份任选一天,西安市不下雨的概率为=.
(2)称相邻的两个日期为“互邻日期对”
(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f==.
以频率估计概率,运动会期间不下雨的概率为.
互斥事件与对立事件的概率
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及
以上
顾客数(人)
x
30
25
y
10
结算时间
(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).
【导学号:62172299】
[解] (1)由题意,得
解得
该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.
又==1.9,
∴估计顾客一次购物的结算时间的平均值为1.9分钟.
(2)设B,C分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.”
将频率视为概率,得P(B)==,
P(C)==.
∵B,C互斥,且=B+C,
∴P()=P(B+C)=P(B)+P(C)=+=,
因此P(A)=1-P()=1-=,
∴一位顾客一次购物结算时间不超过2分钟的概率为0.7.
[规律方法] 1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.
(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题,多考虑间接法.
[变式训练3] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
[解] (1)P(A)=,
P(B)==,
P(C)==.
故事件A,B,C的概率分别为,,.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A+B+C.
∵A,B,C两两互斥,
∴P(M)=P(A+B+C)=P(A)+P(B)+P(C)
==,
故1张奖券的中奖概率约为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A+B)=1-=,
故1张奖券不中特等奖且不中一等奖的概率为.
[思想与方法]
1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.
3.求复杂的互斥事件的概率一般有两种方法:
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反).
[易错与防范]
1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.
2.正确认识互斥事件与对立事件的关系:对立事件是特殊的互斥事件,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.
3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.
课时分层训练(五十四)
A组 基础达标
(建议用时:30分钟)
一、填空题
1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是________事件.
互斥 [由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件.]
2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________.
0.35 [∵事件A={抽到一等品},且P(A)=0.65,
∴事件“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.]
3.给出下列三个命题,其中正确命题有________个.
①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②
做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率.
0 [①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念.]
4.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.
经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569
683 431 257 393 027 556 488 730 113
537 989
据此估计,该运动员三次投篮恰有两次命中的概率为________.
【导学号:62172300】
[20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两次命中的概率为P==.]
5.(2017·云南昆明3月月考)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.
[由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.]
6.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是________.
[设a,b分别为甲、乙摸出球的编号.由题意,摸球试验共有n=6×6=36种不同结果,满足a=b的基本事件共有6种,
所以摸出编号不同的概率P=1-=.]
7.如图541所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是________.
【导学号:62172301】
图541
[设被污损的数字为x,则
甲=(88+89+90+91+92)=90,
乙=(83+83+87+99+90+x),
若甲=乙,则x=8.
若甲>乙,则x可以为0,1,2,3,4,5,6,7,
故P==.]
8.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=________.
[将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”.
则C,D互斥,
且P(C)=,P(D)=,
∴P(A+B)=P(C+D)=P(C)+P(D)=.]
9.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是________.
①A+B与C是互斥事件,也是对立事件;
②B+C与D是互斥事件,也是对立事件;
③A+C与B+D是互斥事件,但不是对立事件;
④A与B+C+D是互斥事件,也是对立事件.
④ [由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,④正确.]
10.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是________.
[由题意可知
解得
相关文档
- 高考数学复习练习第1部分 专题五 2021-04-14 11:18:005页
- 高考数学复习练习第1部分 专题一 2021-04-14 10:33:084页
- 高考数学复习练习试题2_7函数与方2021-04-14 00:46:533页
- 高考数学复习练习试题11_1随机事件2021-04-13 13:40:153页
- 高考数学复习练习试题10_2总体分布2021-04-13 11:48:445页
- 高考数学复习练习试题9_1直线的方2021-04-13 09:13:523页
- 高考数学复习练习第1部分 专题七 2021-04-13 03:12:222页
- 高考数学复习练习试题10_3变量的相2021-04-12 11:22:165页
- 高考数学复习练习试题12_2基本算法2021-02-26 22:07:485页
- 高考数学复习练习试题4_4函数y=Asin2021-02-26 21:56:014页