- 171.39 KB
- 2021-02-27 发布
14.4因式分解
问题1:你能叙述多项式因
式分解的定义吗?
多项式的因式分解其实
是整式乘法的逆用, 也就
是把一个多项式化成了几个
整式的积的形式.
问题2:运用提公因式法分
解因式的步骤是什么?
分解因式(1)8m2n+2mn
(2)12xyz-9x2y2
(3)2a(y-z)-3b(z-y)
(4)a2-b2
问题3:你能将a2-b2分解
因式吗?
多项式的乘法公式的逆向应用,就
是多项式的因式分解公式,如果被
分解的多项式符合公式的条件,就
可以直接写出因式分解的结果,这
种分解因式的方法称为运用公式
法.今天我们就来学习利用平方差
公式分解因式
观察平方差公式:
a2-b2=(a+b)(a-b)的项、指
数、符号有什么特点?
(1)左边是二项式,每项都是
平方的形式,两项的符号相反.
(2)右边是两个多项式的积,一
个因式是两数的和,另一个因式是
这两数的差.
(3)在乘法公式中,“平方差”
是计算结果,而在分解因式,
“平方差”是得分解因式的多
项式由此可知如果多项式是两数
差的形式,并且这两个数又
都可以写成平方的形式,那
么这个多项式可以运用平方
差公式分解因式.
[例1]分解因式:
(1)4x2-9
(2)(x+p)2-(x+q)2
1、下列多项式中,能用
平方差分解因式的是( )
A、x2 -xy B、x2 +xy
C、-x2 +y2 D、x2+y2
2、分解因式:
(1)a2 -144b2
(2)16(x+y)2 -25(x-y)2
例4 分解因式:
(1)x4-y4;
(2) a3b – ab.
分解因式:
(1) a2b— b
(2) a2(x-y)-x+y
(3) –a4+16
分解因式:
(1)-4x2y2-6x3y2
(⑵)a2(x-1)+b2(1-x)
(⑶) x3-9x
1.如果多项式各
项含有公因式,则第一步是提出
这个公因式. 2.如果多项式各
项没有公因式,则第一步考虑用
公式分解因式 3.第一步分解因
式以后,所含的多项式还可以继
续分解, 则需要进一步分解因
式.直到每个多项式因式都不能
分解为止.
相关文档
- 八年级上数学课件八年级上册数学课2021-02-27 08:56:5517页
- 八年级上数学课件《一次函数》 (162021-02-27 08:53:108页
- 八年级上数学课件- 11-1-2 三角形2021-02-26 22:33:4916页
- 八年级上数学课件八年级上册数学课2021-02-26 22:31:1616页
- 八年级上数学课件12-1-1分式及其基2021-02-26 22:22:0326页
- 八年级上数学课件八年级上册数学课2021-02-26 22:21:584页
- 八年级上数学课件阶段核心题型 分2021-02-26 22:20:2315页
- 八年级上数学课件八年级上册数学课2021-02-26 21:58:5828页
- 八年级上数学课件- 14-3-1 提公因2021-02-26 21:56:1015页