- 1008.50 KB
- 2021-05-10 发布
求数列通项公式的十种方法
一、公式法
例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法
例2 已知数列满足,求数列的通项公式。
解:由得则
所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式。
解:由得则
所以
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4 已知数列满足,求数列的通项公式。
解:两边除以,得,
则,故
因此,
则
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列
的通项公式,最后再求数列的通项公式。
三、累乘法
例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故
所以数列的通项公式为
评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。
解:因为 ①
所以 ②
用②式-①式得
则
故
所以 ③
由,,则,又知,则,代入③得。
所以,的通项公式为
评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法
例7 已知数列满足,求数列的通项公式。
解:设 ④
将代入④式,得,等式两边消去,得,两边除以,得代入④式得 ⑤
由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设 ⑥
将代入⑥式,得
整理得。
令,则,代入⑥式得
⑦
由及⑦式,
得,则,
故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
例9 已知数列满足,求数列的通项公式。
解:设 ⑧
将代入⑧式,得
,则
等式两边消去,得,
解方程组,则,代入⑧式,得
⑨
由及⑨式,得
则,故数列为以为首项,以2为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
五、对数变换法
例10 已知数列满足,,求数列的通项公式。
解:因为,所以。在式两边取常用对数得 ⑩
设
将⑩式代入式,得,两边消去并整理,得,则
,故
代入式,得
由及式,
得,
则,
所以数列是以为首项,以5为公比的等比数列,则,因此
则。
评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
六、迭代法
例11 已知数列满足,求数列的通项公式。
解:因为,所以
又,所以数列的通项公式为。
评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。
七、数学归纳法
例12 已知数列满足,求数列的通项公式。
解:由及,得
由此可猜测,往下用数学归纳法证明这个结论。
(1)当时,,所以等式成立。
(2)假设当时等式成立,即,则当时,
由此可知,当时等式也成立。
根据(1),(2)可知,等式对任何都成立。
评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。
八、换元法
例13 已知数列满足,求数列的通项公式。
解:令,则
故,代入得
即
因为,故
则,即,
可化为,
所以是以为首项,以为公比的等比数列,因此,则,即,得。
评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
九、不动点法
例14 已知数列满足,求数列的通项公式。
解:令,得,则是函数的两个不动点。因为
。所以数列是以为首项,以为公比的等比数列,故,则。
评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,再求出数列的通项公式,最后求出数列的通项公式。
例15 已知数列满足,求数列的通项公式。
解:令,得,则是函数的不动点。
因为,所以
,
所以数列是以为首项,以为公差的等差数列,则,故。
评注:本题解题的关键是先求出函数的不动点,即方程的根,进而可推出,从而可知数列为等差数列,再求出数列的通项公式,最后求出数列的通项公式。
十、特征根法
例16 已知数列满足,求数列的通项公式。
解:的相应特征方程为,解之求特征根是,所以。
由初始值,得方程组
求得
从而。
评注:本题解题的关键是先求出特征方程的根。再由初始值确定出,从而可得数列的通项公式。
相关文档
- 数学(心得)之数学理解模型2021-05-10 17:25:194页
- 高考全国卷1新课标1语文试卷及答案2021-05-10 17:25:1119页
- 人教a版数学【选修1-1】作业:3-2-22021-05-10 17:25:055页
- 人教版高中数学选修4-5练习:第二讲22021-05-10 17:25:056页
- 【地理】山东省新高考2019-2020学2021-05-10 17:24:579页
- 人教版数学一年级上册《11-20各数2021-05-10 17:24:075页
- 语法填空高考真题2021-05-10 17:24:0621页
- 山东专用2021版高考数学一轮复习第2021-05-10 17:23:5554页
- 2013年湖南湘潭中考数学试卷及答案2021-05-10 17:23:3711页
- 五年级上册数学课件-9 鸡兔同笼 |冀2021-05-10 17:23:3719页