- 293.50 KB
- 2021-04-16 发布
1.“k<9”是“方程+=1表示双曲线”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选A.因为方程+=1表示双曲线,所以(25-k)(k-9)<0,所以k<9或k>25,
所以“k<9”是“方程+=1表示双曲线”的充分不必要条件,故选A.
2.若双曲线C1:-=1与C2:-=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=( )
A.2 B.4
C.6 D.8
解析:选B.由题意得,=2⇒b=2a,C2的焦距2c=4⇒c==2⇒b=4,故选B.
3.(2018·高考全国卷Ⅲ)已知双曲线C:-=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为( )
A. B.2
C. D.2
解析:选D.法一:由离心率e==,得c=a,又b2=c2-a2,得b=a,所以双曲线C的渐近线方程为y=±x.由点到直线的距离公式,得点(4,0)到C的渐近线的距离为=2.故选D.
法二:离心率e=的双曲线是等轴双曲线,其渐近线方程是y=±x,由点到直线的距离公式得点(4,0)到C的渐近线的距离为=2.故选D.
4.(2017·高考天津卷)已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )
A.-=1 B.-=1
C.-y2=1 D.x2-=1
解析:选D.由△OAF是边长为2的等边三角形可知,c=2,=tan 60°=,又c2=a2+b2,联立可得a=1,b=,所以双曲线的方程为x2-=1.
5.设F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,若双曲线上存在点A,使∠F1AF2=90°且|AF1|=3|AF2|,则双曲线的离心率为( )
A. B.
C. D.
解析:选B.因为∠F1AF2=90°,
故|AF1|2+|AF2|2=|F1F2|2=4c2,
又|AF1|=3|AF2|,且|AF1|-|AF2|=2a,
故10a2=4c2,故=,
故e==.
6.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为____________.
解析:已知双曲线的离心率为2,焦点是(-4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为-=1.
答案:-=1
7.若双曲线-=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为________.
解析:由双曲线的渐近线过点(3,-4)知=,
所以=.又b2=c2-a2,所以=,
即e2-1=,所以e2=,所以e=.
答案:
8.双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=________.
解析:双曲线-=1的渐近线方程为y=±x,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得=1.又正方形OABC的边长为2,所以c=2,所以a2+b2=c2=(2)2,解得a=2.
答案:2
9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且点(4,-),点M(3,m)都在双曲线上.
(1)求双曲线的方程;
(2)求证:·=0;
(3)求△F1MF2的面积.
解:(1)因为e=,则双曲线的实轴、虚轴相等.
所以可设双曲线方程为x2-y2=λ.
因为双曲线过点(4,-),
所以16-10=λ,即λ=6.
所以双曲线方程为x2-y2=6.
(2)证明:设F1(-2,0),F2(2,0),
则=(-2-3,-m),
=(2-3,-m).
所以·
=(3+2)×(3-2)+m2
=-3+m2,
因为M点在双曲线上,
所以9-m2=6,即m2-3=0,
所以·=0.
(3)△F1MF2的底边长|F1F2|=4.
由(2)知m=±.
所以△F1MF2的高h=|m|=,
所以S△F1MF2=×4×=6.
10.已知双曲线C:-=1(a>0,b>0)的离心率为,点(,0)是双曲线的一个顶点.
(1)求双曲线的方程;
(2)经过双曲线右焦点F2作倾斜角为30°的直线,直线与双曲线交于不同的两点A,B,求AB的长.
解:(1)因为双曲线C:-=1(a>0,b>0)的离心率为,点(,0)是双曲线的一个顶点,
所以解得c=3,b=,
所以双曲线的方程为-=1.
(2)双曲线-=1的右焦点为F2(3,0),
所以经过双曲线右焦点F2且倾斜角为30°的直线的方程为y=(x-3).
联立
得5x2+6x-27=0.
设A(x1,y1),B(x2,y2),
则x1+x2=-,x1x2=-.
所以|AB|= × =.
1.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB的中点在该双曲线上,O为坐标原点,则△AOB的面积为( )
A. B.1
C.2 D.4
解析:选C.由题意得,双曲线的两条渐近线方程为y=±x,设A(x1,x1)B(x2,-x2),所以AB中点坐标为,所以-=2,即x1x2=2,所以S△AOB=|OA|·|OB|=|x1|·|x2|=x1x2=2,故选C.
2.已知点F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线C的左、右两支分别交于A,B两点,若|AB|∶|BF2|∶|AF2|=3∶4∶5,则双曲线的离心率为( )
A.2 B.4
C. D.
解析:选C.由题意,设|AB|=3k,|BF2|=4k,
|AF2|=5k,则BF1⊥BF2,
|AF1|=|AF2|-2a=5k-2a,
因为|BF1|-|BF2|=5k-2a+3k-4k=4k-2a=2a,
所以a=k,所以|BF1|=6a,|BF2|=4a,
又|BF1|2+|BF2|2=|F1F2|2,
即13a2=c2,所以e==.
3.(2018·高考全国卷Ⅰ)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=( )
A. B.3
C.2 D.4
解析:选B.因为双曲线-y2=1的渐近线方程为y=±x,所以∠MON=60°.不妨设过点F的直线与直线y=x交于点M,由△OMN为直角三角形,不妨设∠OMN=90°,则∠MFO=60°,又直线MN过点F(2,0),所以直线MN的方程为y=-(x-2),由得所以M,所以|OM|==,所以|MN|=|OM|=3,故选B.
4.(2019·东北四市模拟)F为双曲线-=1(a>b>0)的左焦点,过点F且斜率为1的直线与双曲线的两条渐近线分别交于A,B两点,若=,则双曲线的离心率为________.
解析:设双曲线的两条渐近线分别为l1,l2,l1:y=x,l2:y=-x,由于kFA=1,则FA的方程为y=x+c,
由,可得A(-,),
由,可得B(,),
因为=,所以点A为FB的中点,故=,则b=3a,即b2=9a2,
所以c2-a2=9a2,即 e2=10,所以e=.
答案:
5.中心在原点,焦点在x轴上的椭圆与双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.
(1)求椭圆和双曲线的方程;
(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.
解:(1)由题知c=,设椭圆方程为+=1,双曲线方程为-=1,
则解得a=7,m=3.
所以b=6,n=2.
所以椭圆方程为+=1,双曲线方程为-=1.
(2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,
所以|PF1|=10,|PF2|=4.
又|F1F2|=2,
所以cos∠F1PF2=
==.
6.一条斜率为1的直线l与离心率为的双曲线-=1(a>0,b>0)交于P,Q两点,直线l与y轴交于R点,且·=-3,=3,求直线和双曲线的方程.
解:因为e=,所以b2=2a2,
所以双曲线方程可化为2x2-y2=2a2.
设直线l的方程为y=x+m.
由
得x2-2mx-m2-2a2=0,
所以Δ=4m2+4(m2+2a2)>0,
所以直线l一定与双曲线相交.
设P(x1,y1),Q(x2,y2),
则x1+x2=2m,x1x2=-m2-2a2,
因为=3,xR==0,
所以x1=-3x2,
所以x2=-m,-3x=-m2-2a2.
消去x2,得m2=a2.
·=x1x2+y1y2
=x1x2+(x1+m)(x2+m)
=2x1x2+m(x1+x2)+m2
=m2-4a2=-3,
所以m=±1,a2=1,b2=2.
直线l的方程为y=x±1,双曲线的方程为x2-=1.
您可能关注的文档
相关文档
- 2020秋八年级数学上册第六章《数据2021-04-16 12:06:1828页
- 2020届一轮复习人教A版高考政治人2021-04-16 01:55:329页
- 2020届一轮复习通用版专题8-2城市2021-04-15 01:45:3313页
- 高考生物一轮复习作业必修 组成细2021-04-14 23:18:517页
- 2019版地理浙江选考大二轮复习作业2021-04-14 20:01:495页
- 2020届一轮复习人教A版高考政治人2021-04-14 19:06:2811页
- 2020届一轮复习通用版专题4-3河流2021-04-14 13:27:2914页
- 高考第一轮复习数学133函数的极限2021-04-14 11:59:549页
- 2020届一轮复习人教A版高考政治人2021-04-13 22:18:3811页
- 部编版一年级拼音复习作业2021-04-13 18:59:113页