- 866.50 KB
- 2021-04-14 发布
2017年下学期冷水江市第一中学高二期中考试试卷
理 科 数 学
时量:120分钟 分值120分
命题:王在轩 审题:周国新
一、 选择题(本大题共12题,每小题4分,共48分,在每小题给出的四个选项中只有一项符合题目要求)
1.在△ABC中,“A>B”是“sinA>sinB”成立的( )
A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件
2.过双曲线的右焦点且与x轴垂直的直线交该双曲线的两条渐近线于A、B两点,则|AB|=( )
A. B.2 C.6 D.4
3.命题“∃x0∈R,”的否定是( )
A.∀x∈R,x2﹣x﹣1≤0 B.∀x∈R,x2﹣x﹣1>0
C.∃x0∈R, D.∃x0∈R,
4.在△ABC中,三个内角所对的边为,若, ,则( )
A. B. C. D.
5.已知命题p:若x<﹣3,则x2﹣2x﹣8>0,则下列叙述正确的是( )
A.命题p的逆命题是:若x2﹣2x﹣8≤0,则x<﹣3
B.命题p的否命题是:若x≥﹣3,则x2﹣2x﹣8>0
C.命题p的逆否命题是:若x<﹣3,则x2﹣2x﹣8≤0
D.命题p的逆否命题是真命题
6.设变量x,y满足约束条件,则的取值范围是( )
A.[﹣5,] B.[﹣5,0)∪[,+∞)
C.(﹣∞,﹣5]∪[,+∞) D.[﹣5,0)∪(0,]
7.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )
A.甲是乙成立的充分不必要条件 B.甲是乙成立的必要不充分条件
C.甲是乙成立的充要条件 D.甲是乙成立的非充分非必要条件
8.如图,,是双曲线与椭圆的公共焦点,点A是,在第一象限的公共点.若,则的离心率是( )
A. B. C. D.
9.若,则的最小值为( )
A.6 B.12 C.16 D.24
10.抛物线的焦点为F,过焦点F且倾斜角为的直线与抛物线相交于A,B两点,若|AB|=8,则抛物线的方程为( )
A. B. C. D.
11.设不等式组表示的平面区域为D.若圆C:(x+1)2+(y+1)2=r2(r>0)不经过区域D上的点,则r的取值范围是( )
A.[2,2] B.[2,3]
C.[3,2] D.(0,2)∪(2,+∞)
12.如图,为椭圆的长轴的左、右端点,O为坐标原点,S,
Q,T为椭圆上不同于的三点,直线围成一个平行四边形,则=( )
A.5 B.3+ C.9 D.14
二、 填空题(本大题共4小题,每小题4分,共16分)
13.等差数列的公差是2,若成等比数列,则的前n项和
14.双曲线(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于
15.已知分别为的三个内角的对边,且 ,则面积的最大值为
16.已知数列满足,,若不等式恒成立,则实数t的取值范围是 .
三、 解答题(本大题6小题,共56分)
17.(本题8分)△错误!未找到引用源。中,角错误!未找到引用源。所对的边分别为错误!未找到引用源。,已知错误!未找到引用源。=3,错误!未找到引用源。=错误!未找到引用源。,错误!未找到引用源。,
(1) 求错误!未找到引用源。得值;
(2) 求△错误!未找到引用源。的面积.
18.(本题8分)设数列满足.
(1)求的通项公式;(2)求数列的前n项和.
19.(本题8分)命题p:关于x的不等式的解集为;命题q:函数
为增函数.命题r:a满足.
(1)若p∨q是真命题且p∧q是假命题.求实数a的取值范围.
(2)试判断命题¬p是命题r成立的一个什么条件.
20.(本题10分)已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.
(1)求数列错误!未找到引用源。的通项公式;
(2)设错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和.
21.(本题10分)已知点F是拋物线C:的焦点,若点M在C上,且|MF|=.
(1)求p的值;
(2)若直线l经过点Q(3,﹣1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.
22.(本题12分)已知椭圆C:(a>b>0)的离心率为,且过点(1,).
(1)求椭圆C的方程;(2)设与圆O:相切的直线l交椭圆C于A,B
两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
2017年下学期冷水江市第一中学高二期中考试试卷
数 学 答 案
时量:120分钟 分值120分
命题:王在轩 审题:周国新
一、 选择题(本大题共12题,每小题4分,共48分,在每小题给出的四个选项中只有一项符合题目要求)
题目
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
A
B
D
C
B
B
C
D
D
D
二、 填空题(本大题共4小题,每小题4分,共16分)
13. ; 14. 4 ; 15. ; 16. [﹣9,+∞) .
三、 解答题(本大题6小题,共56分)
17.(本题8分)△中,角所对的边分别为,已知=3,=,,
(1) 求得值;
(2) 求△的面积.
【答案】(1).(2)的面积.
18.(本题8分)设数列满足.
(1)求的通项公式;(2)求数列的前n项和.
解:(1)数列{an}满足a1+3a2+…+(2n﹣1)an=2n.
n≥2时,a1+3a2+…+(2n﹣3)an﹣1=2(n﹣1).
∴(2n﹣1)an=2.∴an=.
当n=1时,a1=2,上式也成立.
∴an=.
(2)==﹣.
∴数列{}的前n项和=++…+=1﹣=.
19.(本题8分)命题p:关于x的不等式的解集为;命题q:函数为增函数.命题r:a满足.
(1)若p∨q是真命题且p∧q是假命题.求实数a的取值范围.
(2)试判断命题¬p是命题r成立的一个什么条件.
解:关于x的不等式x2+(a﹣1)x+a2≤0的解集为∅,
∴△=(a﹣1)2﹣4a2<0,
即3a2+2a﹣1>0,
解得a<﹣1或a>,
∴p为真时a<﹣1或a>;
又函数y=(2a2﹣a)x为增函数,
∴2a2﹣a>1,
即2a2﹣a﹣1>0,
解得a<﹣或a>1,
∴q为真时a<﹣或a>1;
(1)∵p∨q是真命题且p∧q是假命题,∴p、q一真一假,
∴当P假q真时,,即﹣1≤a<﹣;
当p真q假时,,即<a≤1;
∴p∨q是真命题且p∧q是假命题时,a的范围是﹣1≤a<﹣或<a≤1;
(2)∵,
∴﹣1≤0,
即,
解得﹣1≤a<2,
∴a∈[﹣1,2),
∵¬p为真时﹣1≤a≤,
由[﹣1,)是[﹣1,2)的真子集,
∴¬p⇒r,且r≠>¬p,
∴命题¬p是命题r成立的一个充分不必要条件.
20.(本题10分)已知数列的前项和.
(1)求数列的通项公式;
(2)设,求数列的前项和.
【答案】(1) (2)
21.(本题10分)已知点F是拋物线C:的焦点,若点M在C上,且|MF|=.
(1)求p的值;
(2)若直线l经过点Q(3,﹣1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.
解:(1)由抛物线定义知|MF|=x0+,则x0+=,解得x0=2p,
又点M(x0,1)在C上,代入y2=2px,整理得2px0=1,解得x0=1,p=,
∴p的值;
(2)证明:由(1)得M(1,1),拋物线C:y2=x,
当直线l经过点Q(3,﹣1)且垂直于x轴时,此时A(3,),B(3,﹣),
则直线AM的斜率kAM=,直线BM的斜率kBM=,
∴kAM•kBM=×=﹣.
当直线l不垂直于x轴时,设A(x1,y1),B(x2,y2),
则直线AM的斜率kAM===,同理直线BM的斜率kBM=,
kAM•kBM=•=,设直线l的斜率为k(k≠0),且经过Q(3,﹣1),则直线l的方程为y+1=k(x﹣3),
联立方程,消x得,ky2﹣y﹣3k﹣1=0,
∴y1+y2=,y1•y2=﹣=﹣3﹣,
故kAM•kBM===﹣,
22.(本题12分)已知椭圆C:(a>b>0)的离心率为,且过点(1,).
(1)求椭圆C的方程;( 2)设与圆O:相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
解:(1)由题意可得,e==,a2﹣b2=c2,
点(1,)代入椭圆方程,可得+=1,
解得a=,b=1,
即有椭圆的方程为+y2=1;
(2)①当k不存在时,x=±时,可得y=±,
S△OAB=××=;
②当k存在时,设直线为y=kx+m(k≠0),A(x1,y1),B(x2,y2),
将直线y=kx+m代入椭圆方程可得(1+3k2)x2+6kmx+3m2﹣3=0,
x1+x2=﹣,x1x2=,
由直线l与圆O:x2+y2=相切,可得=,
即有4m2=3(1+k2),
|AB|=•=•
=•=•
=•≤•=2,
当且仅当9k2= 即k=±时等号成立,
可得S△OAB=|AB|•r≤×2×=,
即有△OAB面积的最大值为,此时直线方程y=±x±1.