- 838.00 KB
- 2021-04-14 发布
专题六 函数与导数
建知识 络 明内在联系
[高考点拨] 函数与导数专题是历年浙江高考的“常青树”,在浙江新高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现 以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象和性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.
突破点14 函数的图象和性质
(对应 生用书第52页)
[核心知识提炼]
提炼1函数的奇偶性
(1)若函数y=f(x)为奇(偶)函数,则f(-x)=-f(x)(f(-x)=f(x)).
(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)=0.
(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0 判断.
(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y轴对称.
(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.
提炼2 函数的周期性
(1)若函数y=f(x)满足f(a+x)=f(x-a)(a≠0),则函数y=f(x)是以2|a|为周期的周期性函数.
(2)若奇函数y=f(x)满足f(a+x)=f(a-x)(a≠0),则函数y=f(x)是以4|a|为周期的周期性函数.
(3)若偶函数y=f(x)满足f(a+x)=f(a-x)(a≠0),则函数y=f(x)是以2|a|为周期的周期性函数.
(4)若f(a+x)=-f(x)(a≠0),则函数y=f(x)是以2|a|为周期的周期性函数.
(5)若y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是以2|b-a|为周期的周期性函数.
提炼3 函数的图象
(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.
(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y=f(x)与y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|等的相互关系.
(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.
[高考真题回访]
回访1 函数的性质
1.(2017·浙江高考)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M
,最小值是m,则M-m( )
A.与a有关,且与b有关
B.与a有关,但与b无关
C.与a无关,且与b无关
D.与a无关,但与b有关
B [法一:设x1,x2分别是函数f(x)在[0,1]上的最小值点与最大值点,则m=x+ax1+b,M=x+ax2+b.
∴M-m=x-x+a(x2-x1),显然此值与a有关,与b无关.故选B.
法二:由题意可知,函数f(x)的二次项系数为固定值,则二次函数图象的形状一定.随着b的变动,相当于图象上下移动,若b增大k个单位,则最大值与最小值分别变为M+k,m+k,而(M+k)-(m+k)=M-m,故与b无关.随着a的变动,相当于图象左右移动,则M-m的值在变化,故与a有关.故选B.]
2.(2015·浙江高考)存在函数f(x)满足:对于任意x∈R都有( )
A.f(sin 2x)=sin x B.f(sin 2x)=x2+x
C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|
D [取x=0,,可得f(0)=0,1,这与函数的定义矛盾,所以选项A错误;
取x=0,π,可得f(0)=0,π2+π,这与函数的定义矛盾,所以选项B错误;
取x=1,-1,可得f(2)=2,0,这与函数的定义矛盾,所以选项C错误;
取f(x)=,则对任意x∈R都有f(x2+2x)==|x+1|,故选项D正确.
综上可知,本题选D.]
3.(2014·浙江高考)设函数f(x)=若f(f(a))=2,则a=________.
[若a>0,则f(a)=-a2<0,f(f(a))=a4-2a2+2=2,得a=.
若a≤0,则f(a)=a2+2a+2=(a+1)2+1>0,f(f(a))=-(a2+2a+2)2=2,此方程无解.]
4.(2015·浙江高考)已知函数f(x)=则f(f(-3))=________,f(x)的最小值是________.
0 2-3 [∵f(-3)=lg[(-3)2+1]=lg 10=1,
∴f(f(-3))=f(1)=1+2-3=0.
当x≥1时,x+-3≥2-3=2-3,当且仅当x=,即x=时等号成立,此时f(x)min=2-3<0;
当x<1时,lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.
∴f(x)的最小值为2-3.]
回访2 函数的图象
5.(2017·浙江高考)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )
图141
D [观察导函数f′(x)的图象可知,f′(x)的函数值从左到右依次为小于0,大于0,小于0,大于0,
∴对应函数f(x)的增减性从左到右依次为减、增、减、增.
观察选项可知,排除A、C.
如图所示,f′(x)有3个零点,从左到右依次设为x1,x2,x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项D正确.故选D.]
6.(2015·浙江高考)函数f(x)=cos x(-π≤x≤π且x≠0)的图象可能为( )
D [函数f(x)=cos x(-π≤x≤π且x≠0)为奇函数,排除选项A,B;当x=π时,f(x)=cos π=-π<0,排除选项C,故选D.]
7.(2014·浙江高考)在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是( )
D [法一:分a>1,01时,y=xa与y=logax均为增函数,但y=xa递增较快,排除C;
当01,而此时幂函数f(x)=xa的图象应是增长越 越快的变化趋势,故C错.]
(对应 生用书第54页)
热点题型1 函数图象的判断与应用
题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.
【例1】 (1)函数y=2x2-e|x|在[-2,2]的图象大致为( )
(2)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则i=( )
A.0 B.m
C.2m D.4m
(1)D (2)B [(1)∵f(x)=2x2-e|x|,x∈[-2,2]是偶函数,
又f(2)=8-e2∈(0,1),故排除A,B.
设g(x)=2x2-ex,则g′(x)=4x-ex.
又g′(0)<0,g′(2)>0,
∴g(x)在(0,2)内至少存在一个极值点,
∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.
(2)∵f(x)=f(2-x),
∴函数f(x)的图象关于直线x=1对称.
又y=|x2-2x-3|=|(x-1)2-4|的图象关于直线x=1对称,∴两函数图象的交点关于直线x=1对称.
当m为偶数时,i=2×=m;
当m为奇数时,i=2×+1=m.
故选B.]
[方法指津]
函数图象的判断方法
1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置.
2.根据函数的单调性,判断图象的变化趋势.
3.根据函数的奇偶性,判断图象的对称性.
4.根据函数的周期性,判断图象的循环往复.
5.取特殊值代入,进行检验.
[变式训练1] (1)函数f(x)=|x|+(其中a∈R)的图象不可能是( )
图142
(2)如图141,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是
( )
A.{x|-1<x≤0}
B.{x|-1≤x≤1}
C.{x|-1<x≤1}
D.{x|-1<x≤2}
(1)C (2)C [(1)当a=0时,f(x)=|x|,故A可能;由题意得f(x)=则当x>0时,f′(x)=1-=,当x<0时,f′(x)=-1-=,若a>0,易知当x>0,0时,f(x)为增函数,x<0时,f(x)为减函数,故B可能;若a<0,易知x<0,-0时,f(x)为增函数,故D可能,故选C.
(2)令g(x)=y=log2(x+1),作出函数g(x)图象如图.
由得
∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}.]
热点题型2 函数性质的综合应用
题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.
【例2】 (1)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是( )
A. B.∪(1,+∞)
C. D.∪
(2)设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且x∈时,f(x)=-x2,则f(3)+f的值等于________. 【导 号:68334135】
(1)A (2)- [(1)法一:∵f(-x)=ln(1+|-x|)-=f(x),
∴函数f(x)为偶函数.
∵当x≥0时,f(x)=ln(1+x)-,
在(0,+∞)上y=ln(1+x)递增,y=-也递增,
根据单调性的性质知,f(x)在(0,+∞)上单调递增.
综上可知:f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔x2>(2x-1)2⇔3x2-4x+1<0⇔0,
∴x=0不满足f(x)>f(2x-1),故C错误.
令x=2,此时f(x)=f(2)=ln 3-,f(2x-1)=f(3)=ln 4-.∵f(2)-f(3)=ln 3-ln 4-,
其中ln 3f(2x-1),
故B,D错误.故选A.
(2)根据对任意t∈R都有f(t)=f(1-t)可得f(-t)=f(1+t),即f(t+1)=-f(t),进而得到
f(t+2)=-f(t+1)=-[-f(t)]=f(t),得函数y=f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f=f=-.所以f(3)+f=0+=-.
[方法指津]
函数性质的综合应用类型
1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.
2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.
3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.
[变式训练2] (1)(2017·浙江五校联考)已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则不等式<f(1)的解集为( )
【导 号:68334136】
A. B.(0,e)
C. D.(e,+∞)
(2)已知函数y=f(x)是定义在R上的奇函数,∀x∈R,f(x-1)=f(x+1)成立,当x∈(0,1)且x1≠x2时,有<0.给出下列命题:
①f(1)=0;
②f(x)在[-2,2]上有5个零点;
③点(2 014,0)是函数y=f(x)图象的一个对称中心;
④直线x=2 014是函数y=f(x)图象的一条对称轴.
则正确命题的序号是________.
(1)C (2)①②③ [(1)∵f(x)为R上的奇函数,则f=f(-ln x)=-f(ln x),
∴=
=|f(ln x)|,即原不等式可化为|f(ln x)|<f(1),
∴-f(1)<f(ln x)<f(1),即f(-1)<f(ln x)<f(1).又由已知可得f(x)在R上单调递增,∴-1<ln x<1,
解得<x<e,故选C.
(2)令f(x-1)=f(x+1)中x=0,
得f(-1)=f(1).
∵f(-1)=-f(1),
∴2f(1)=0,
∴f(1)=0,故①正确;
由f(x-1)=f(x+1)得f(x)=f(x+2),
∴f(x)是周期为2的周期函数,
∴f(2)=f(0)=0,
又当x∈(0,1)且x1≠x2时,有<0,
∴函数在区间(0,1)上单调递减,可作函数的简图如图:
由图知②③正确,④不正确,∴正确命题的序号为①②③.]